CAD

Der Begriff Rechnerunterstützte Konstruktion oder englisch Computer Aided Design (CAD) bezeichnet das Erstellen von Konstruktionsunterlagen für mechanische, elektrische oder elektronische Erzeugnisse mit Hilfe von spezieller Software, zum Beispiel im Anlagenbau, Maschinenbau, Autobau, Flugzeugbau, Schiffbau, in der Zahnmedizin und auch in der Architektur, im Bauwesen sowie im Modedesign.

Liste von CAD-Programmen – de.wikipedia.org/wiki/Liste_von_CAD-Programmen

Allgemeines

Mit modernen 3D-CAD-Programmen werden zunächst dreidimensionale Volumenmodelle erstellt. Daraus können zwei- oder dreidimensionale Zeichnungen und bewegte Visualisierungen der Objekte abgeleitet werden. Darüber hinaus lassen sich Bauteileigenschaften wie z. B. Volumen, Gewicht, Schwerpunkt und Trägheitsmomente berechnen.

Ausgehend von den Volumenmodellen lassen sich mit Hilfe spezieller Software Simulationen durchführen, zum Beispiel für mechanische und/oder thermische Belastung (Finite-Elemente-Methode) bei Bauteilen, Lichtsimulationen oder Simulationen des Innenklimas bei Gebäuden, Strömungssimulationen (Wind oder Wellen), Crashsimulationen im Fahrzeugbau und Simulationen verschiedener Fertigungsverfahren (zum Beispiel Spritzgießen) oder elektromagnetische Feldsimulationen.

CAD-Modelle können auch als Eingangsdaten für generative Fertigungsverfahren und die Steuerung von CNC-Maschinen verwendet werden. CAD ist zudem Bestandteil der computerintegrierten Produktion (CIM), bei der sich dem rechnergestützten Entwurf die rechnergesteuerte Fertigung anschließt.

Moderne Programme basieren auf objektorientierten Datenbanken. Jeder Bestandteil des Designs besteht aus einem oder mehreren programmtechnischen Objekten. Änderungen und Spezifikationen sind die Parameter der Objekte. Parameter können auf Relationen mit anderen Design-Aspekten beruhen und Versionen und Variationen desselben Designs verfügbar machen. Objektorientierte Datenbanken erlauben optimale Wiederverwendbarkeit von Designbestandteilen, die bestmögliche Aufzeichnung der Intention des Designers sowie die Möglichkeit schneller Adaption.

Elektronische Schaltungen

Ein weiteres Anwendungsgebiet ist der Entwurf von elektronischen Schaltungen. Entsprechende Programme werden oft auch unter den Begriffen eCAD und EDA zusammengefasst, insbesondere bei Anwendungen im Leiterplattenentwurf und der Installationstechnik.

Im Prozessverlauf einer elektrotechnischen Entwicklung für Leiterplatten stehen im Mittelpunkt:

* der Entwurf der Schaltung in Form eines Schaltplans,
* die Verifizierung der Funktion,
* die Simulation unter verschiedenen Toleranz-Bedingungen, zum Beispiel mit der Software SPICE,
* die Erstellung von Gehäuse und Bauteilbibliotheken,
* die Überführung des Schaltplans in ein Layout (Leiterplatte),
* die Optimierung der Bauteilplatzierung um Platz zu sparen,
* die Erstellung von Belichtungsmasken für die Produktion,
* die Ableitung von produktionswichtigen Daten wie etwa Stücklisten und Prüfplänen.

Wegen der besonderen Anforderungen haben sich Spezialbereiche mit teilweise stark unterschiedlichen Entwicklungsmethoden gebildet, besonders für den computerbasierten Chipentwurf, d. h. die Entwurfsautomatisierung (EDA) für analoge oder digitale Integrierte Schaltkreise, zum Beispiel ASICs. Hierzu verwandt ist das Design von programmierbaren Bausteinen wie Gate Arrays, GALs, FPGA und anderen Typen programmierbarer Logik (PLDs) unter Benutzung von zum Beispiel VHDL, Abel.

Auch in der klassischen Installationstechnik finden sich zahlreiche Anwendungsbereiche für Computersoftware. Ob große Hausinstallationen für Industrie oder öffentliche Gebäude oder der Entwurf und die Umsetzung von SPS-basierten Steuerungsanlagen – selbst in diesem Sektor wird heute das individuelle Design der jeweiligen Anlage stark vom Computer unterstützt.

Im Bereich der Mikrosystemtechnik besteht eine besondere Herausforderung darin, Schaltungsdaten mit den mechanischen Produkt-Konstruktionsdaten (CAD) zusammenzuführen und mit solchen Daten direkt Mikrosysteme herzustellen.

Technik

 

2D

Einfache 2D-CAD-Systeme sind vektororientierte Zeichenprogramme. Zeichnungselemente sind Punkte, Linien, Linienzüge, Kreisbögen, Splines. Werkzeuge ermöglichen das Erzeugen, Positionieren, Ändern und Löschen von Zeichnungselementen. Die Arbeitsweise unterscheidet sich wenig von der klassischen Arbeit am Zeichenbrett. Wesentliche Fortschritte werden durch die Verwendung von Ebenen (Layertechnik) und die Arbeit mit vordefinierten Symbolen (etwa für Norm- und Wiederholteile) erreicht. Komplizierte Berechnungen von Präzisionsmaßen entfallen, da die CAD-Programme um ein Vielfaches genauer sind als eine klassische Zeichnung am Zeichenbrett. Funktionen wie Mehrfachkopieren ersparen außerdem das wiederholte Zeichnen desselben Objekts. Unterstützungen wie automatische Hilfslinien, automatisches Finden von Mittelpunkten, Lotrechten, Tangenten und automatisches Zeichnen der Äquidistante vereinfachen die Arbeit erheblich. Innovative Zoomfunktionen, mit denen Einzelheiten während des Zeichnens vergrößert werden können, ohne dass das aktuelle Werkzeug abgelegt werden muss oder die aktuelle Zeichenfunktion beendet wird, ermöglichen die Arbeit in komplexen Plänen trotz geringer Bildschirmauflösung (1600×1200 Pixel ist für CAD-Anwendung eine geringe Auflösung). Weiter entwickelte CAD-Systeme unterstützen die semi- oder vollautomatische Erzeugung von Bemaßungen und Schraffuren. Ein weiteres Leistungsmerkmal moderner 2D-CAD-Systeme ist die Verwendung von Assoziativität zwischen Zeichnungselementen, zum Beispiel zwischen Linien und Bemaßungen. Leistungsfähige CAD-Systeme stellen Programmierschnittstellen zur Erweiterung der Funktionalität oder zur anwenderspezifischen Anpassung bereit.

2 1/2 D

Hierbei handelt es sich nicht um eine ‚echte‘ 3D-Technologie. Vielmehr wird mit ebenen Objekten (2D-Skizzen) gearbeitet, die sich auf beliebig angeordneten Flächen im Raum befinden. Die Methode ist weniger rechenintensiv als 3D und wird oft von Architekturprogrammen genutzt, weil ähnliche Ergebnisse möglich sind wie bei Volumenmodellen.

3D

Das Ziel eines 3D-CAD-Systems ist die Darstellung der Geometriedaten der Konstruktionsobjekte in 3 Konstruktionsachsen und die Erstellung eines Volumenmodells. Dabei sind die folgenden Modellierungsverfahren verbreitet:

* Kantenmodell oder Drahtmodell – dabei werden die Körperkanten als gedachte Drahtgeometrie durch eine mathematische Beschreibung abgebildet. Häufig bildet das Drahtmodell die Basis für die Erstellung des Flächenmodells. Gedanklich spannt man ein Netz oder etwas Stoff über die Körperkanten bzw. den Stützdraht und erhält so das Flächenmodell, was man in vielen CAD-Programmen in beliebiger Ansicht betrachten kann. So entstehen auch umfangreiche 3D-Modelle, zum Beispiel von Bauwerken.

* Flächenmodell – dabei werden die den Körper begrenzenden Flächen durch eine mathematische Beschreibung, zum Beispiel durch NURBS-Flächen, beschrieben. Zusätzlich wird in der Regel noch die Topologie der Flächen, das heißt, welche Fläche grenzt an welche andere Fläche, mit abgespeichert.

* Volumenmodell – Neben den beschreibenden Flächen eines Körpers wird die Information gespeichert, auf welcher Seite der jeweiligen Fläche sich Materie befindet, d. h. die Fläche ist eine Begrenzungsfläche eines Volumens. Die Volumenbeschreibung dient zur Feststellung von Durchdringungen sowie zur Volumenbestimmung eines dargestellten Körpers.

* Körpermodell – Hierbei handelt es sich um ein technologisches Modell, das alle anderen Modelle vereinigt und zusätzliche Information bezüglich des Werkstoffes und der Oberflächenbeschaffenheit hält. Ein Körpermodell besteht also aus Kanten, Flächen, dem dazugehörigen Volumen und nicht-geometrischen Informationen.

* Konstruktionshistorie – Das Konstruktionsobjekt wird durch eine Reihe von Konstruktionsschritten (wie zum Beispiel Vereinen, Schneiden) aus Grundgeometrien wie Quader, Zylinder, Kegel, hergeleitet. Die Reihenfolge der Konstruktionsschritte sowie die geometrischen Parameter der Grundkörper werden gespeichert. Ein wesentlicher Vorteil des history-basierten Modellierens ist die hohe Flexibilität. Durch Änderungen an den einzelnen Konstruktionsschritten kann die Geometrie auch im Nachhinein vielfältig geändert werden, wenn die Konstruktionslogik der Erstellungslogik im CAD-System folgt.

Ein weiteres Merkmal moderner CAD-Systeme ist die Möglichkeit einer weitgehenden Assoziativität zwischen verschiedenen Geometrieelementen und besonders zwischen dem 3D-Objekt und der davon abgeleiteten Zeichnung. Beispielsweise kann durch Änderung des Durchmessermaßes an der Zeichnung einer Bohrung das 3D-Modell des Teiles der Baugruppe, in der das Teil verbaut ist, modifiziert werden – darüber hinaus gleichzeitig aber auch das für die Fertigung erforderliche Werkzeug.

Ersten Kommentar schreiben

Antworten

Deine E-Mail-Adresse wird nicht veröffentlicht.


*